GER

|AVA

Volume |l—Advanced Features

ELEVENTH EDITION

CAY S. HORSTMANN
T

Core Java

Volume lI—Advanced Features

Eleventh Edition

This page intentionally left blank

N
Core Java

Volume lI—Advanced Features

Eleventh Edition

Cay S. Horstmann

vw Addison-Weslev

Boston ¢ Columbus ® New York ¢ San Francisco ® Amsterdam ¢ Cape Town
Dubai ® London ¢ Madrid ® Milan ® Munich ¢ Paris ® Montreal ® Toronto ® Delhi ¢ Mexico City

Sao Paulo ¢ Sydney ¢ Hong Kong ¢ Seoul ¢ Singapore ¢ Taipei ® Tokyo

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.
Visit us on the Web: informit.com

Library of Congress Preassigned Control Number: 2018963595

Copyright © 2019 Pearson Education Inc.

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or omissions.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics
contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-516631-4
ISBN-10: 0-13-516631-4

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions/

Contents

PrEIACE ... Xv
ACKNOWIBAGMENTS ... XXi
Chapter 1: Streams ... s s s s s s s e s 1
1.1 From Iterating to Stream Operationscccoceeviiiiniiiiiiniiniinnn. 2
1.2 Stream Creationccccociiiiiiiiiiiiiiicce e 5
1.3 The filter, map, and flatMap Methodsccoeeeiiiiiiiiiiiiiiiccenieees 11
1.4 Extracting Substreams and Combining Streamscccceevenine. 12
1.5 Other Stream Transformationsccccceceeverienieniniinieneencneenne. 14
1.6 Simple Reductionscccoeiiviiiiiiiiiiiiiii 15
1.7 The Optional TYPecccocvvviiiiiiiiiiiiiiiiii 16
1.7.1 Getting an Optional Valueccccooiviniinii 17

1.7.2 Consuming an Optional Valuecccccooiiiiinnnnn 17

1.7.3 Pipelining Optional Valuescccccccccoinininnnnnnnnnn 18

1.7.4 How Not to Work with Optional Values 19

1.7.5 Creating Optional Valuesc.ccccocivivininiiniiinnn 20

1.7.6 Composing Optional Value Functions with flatMap 21

1.7.7 Turning an Optional into a Streamc.ccccevvviiinnnnn 22

1.8 Collecting Resultsccecuiiiiiiiiiiiiiiiiiiic 25
1.9 Collecting into Mapsccccevviviiiiiiiiiiiiiiiic 30
1.10 Grouping and Partitioningccocevvvviiiiniiiiniiiiii 34
1.11 Downstream Collectorscccovviiiiiiiiiiiiiiniiiiicicececeecee 36
1.12 Reduction Operationscccccoceviiiiiiiiiiiiiiiiiiiiicn 41
1.13 Primitive Type Streamscccccovvviiiiiniiiiiniinice 43
1.14 Parallel Streamscccoociiiiiiiiiiiiiiiiiiiiiicc e 48
Chapter 2: Input and Outputcccciiiiieemmm s ——————— 55
2.1 Input/Output Sreamscccccviririririeieiciiiinireeieecce s 56
2.1.1 Reading and Writing Bytesccccocooviviiiiiniin 56

2.1.2 The Complete Stream Z00ccccecviviiiiiiiiiiiiiiiices 59

Contents

21.3 Combining Input/Output Stream Filtersccccceuenuee. 63
214 Text Input and Outputccociiiiiiiiiiiiii, 68
2.1.5 How to Write Text Outputccccoviiviiiiiiiiiiiis 68
2.1.6 How to Read Text Inputcceciriiiiiiiiiiiiiiiii, 70
2.1.7 Saving Objects in Text Formatcccccovviniiiiiininnnn 72
2.1.8 Character Encodingsccocevviviniiniiiiiiiiiciicccn, 75
2.2 Reading and Writing Binary Datacccoooii 78
2.2.1 The Datalnput and Datalutput interfacescccccceevveeeeeeecnnnenn. 78
2.2.2 Random-Access Files ..o, 80
2.2.3 ZIP ATChivesccccciiiiiiiiiiiiiiiiiiccccec e 85
2.3 Object Input/Output Streams and Serializationcccccccevrunenne. 88
2.3.1 Saving and Loading Serializable Objectsc..c........ 88

2.3.2 Understanding the Object Serialization File
Formatccooveiiiiii 93
2.3.3 Modifying the Default Serialization Mechanism 100
234 Serializing Singletons and Typesafe Enumerations 102
2.3.5 VerSIONING ..cooviviiiiiiiiiiiiiiiieieicccc e 103
2.3.6 Using Serialization for Cloningccccceceviiiiinininnne. 106
2.4 Working with Files ... 109
241 Paths i 109
2.4.2 Reading and Writing Filescccccocoiiiiiiniiiini, 112
2.4.3 Creating Files and Directoriescccoovvviviiiniiininnnn, 113
244 Copying, Moving, and Deleting Filesccccooenie. 114
245 Getting File Informationcccocovvviiiiniiniiniis 116
2.4.6 Visiting Directory Entriescccccoooviniiiiniini, 118
2.4.7 Using Directory Streamsccccovveiiiiiiieniicncicin, 120
2.4.8 ZIP File SyStemscccooiiuiiiiiiiiiiiiicecece 123
2.5 Memory-Mapped Files ..o 124
251 Memory-Mapped File Performanceccocoovvinniinnnns 125
2.5.2 The Buffer Data Structureccocceiiiiiiiniiniiiiiiine 132
2.6 File LOCKING ...cooviiniiniiiiiiiccicciccc 134
2.7 Regular EXpressionsccccccoivieiiiiiiiiiicicccce 137
2.7.1 The Regular Expression Syntaxcccccccovvvieciienieiencnnns 137
2.7.2 Matching a String ..o 142

2.7.3 Finding Multiple Matchesccccccocoiininiiiiiiii 145

Contents

2.7.4 Splitting along Delimitersc.cccooviiiniiiiiiiinnnn, 147

2.7.5 Replacing Matchesccccooeiiiiiiii, 148
Chapter 3: XMLccccciiiiiemmnniissemssnissssssssnssssmssssssssmssssssssmsssssssssmmssnnsssnmnsnnas 153
3.1 Introducing XMLcccccociiiiiiiiiiiiiiiiii 154
3.2 The Structure of an XML Documentc.cccoociviiiiiiinincnnnn. 156
3.3 Parsing an XML Documentcccoccooiiiiiiiniiii 159
3.4 Validating XML Documentsc.ccoceviviiiiiniiiiiiiiiniiiis 169
3.4.1 Document Type Definitionscccccocevviiiniiiicnincnnnn 171

3.4.2 XML Schemaccccociiiiiiiiiiiiiiii 179
3.4.3 A Practical Exampleccccoooviviiiiiiiii 182

3.5 Locating Information with XPathccccoeiinivniniin 188
3.6 Using NameSPaCeScccccvrvuiiiiiiiiiiiiiieiceic et 193
3.7 Streaming Parsersccccocoiiiiiiiiiiiic 196
3.7.1 Using the SAX Parserc.cccccoevviviiiiniiiniiiiiiiicc, 197

3.7.2 Using the StAX Parsercccccoeeviniiiiininiiiiiiiin 202

3.8 Generating XML Documentscccccoovevviiiiniiiniiiiiiiiiece, 206
3.8.1 Documents without Namespacescccccecvriiiinininnn. 206

3.8.2 Documents with Namespacesccccccoevirviiiiiiiniinnnnnnn. 207

3.8.3 Writing Documentsccccoooiiiiiiiiii 208

3.84 Writing an XML Document with StAX ... 210

3.8.5 An Example: Generating an SVG Fileccccocoeininin 215

3.9 XSL Transformationsc..cccceeeeiiiiiiiieiiiiiiieniciece e 216
Chapter 4: Networking ...t 227
4.1 Connecting to @ Serverccccoviiiiiiiiiiiiiiiin 227
4.1.1 Using Telnet ..o 227

4.1.2 Connecting to a Server with Javac.cccocviiiiinnn 230

4.1.3 Socket Timeoutsccccoovieiiiiviiiiiiiiiicec 232

4.1.4 Internet AdAIessesccccooiiiiiiiiiiiiiiiiiiiiiccccees 234

4.2 Implementing S@IVersccccooiviiiiiiiiiiiiccc e 236
421 Server SOCKetscccccoiviiiiiiiiii 236

4.2.2 Serving Multiple Clientsccccooiviiiniiiniiiininiiins 239

4.2.3 Half-CloSe ..cccoviiiiiiiiiiiiiiiicci 243

4.2.4 Interruptible Socketscccooovviiiiiiiiiiiiiiii 244

4.3 Getting Web Datacccooviviiiiiiiiii 251

m Contents

431 URLs and URIScccocoviiiiiiiiiiiiiicicecc 251

4.3.2 Using a URLConnection to Retrieve Information 254

4.3.3 Posting Form Datac.cccoccooiiiiiiiii, 261

4.4 The HTTP Clentcccocovviviiiiiiiiiiiiiiicic e 271
4.5 Sending E-Mailcccooiiiiiiiiiiiiiiii 278
Chapter 5: Database Programming ..., 283
5.1 The Design of JDBCc.ccccoiiiiiiiiiiiiiiiiiiccccc 284
5.1.1 JDBC Driver Typescccccocuvmviniiniiiiiiiiieieciecccncn, 285

5.1.2 Typical Uses of JDBCcccccooviiiiiiiiiiiiiiiiiiiicic, 286

5.2 The Structured Query Languagecccccoceviiiiiiiiiiinincicinenn, 287
5.3 JDBC Configurationcccccooviviiiiniininiiiii 293
5.3.1 Database URLSccccooiiiiiiiiiiniiiiiiiiiiiiiiiccc 294

5.3.2 Driver JAR FileS ...cccovvooiiiiieieiiiieee et 294

5.3.3 Starting the Databasecccccocoiiiiiiiniiiini 294

5.3.4 Registering the Driver Classccccovieviiiiniiiiinnicnnn, 295

5.3.5 Connecting to the Databasecc.cccoooiil 296

5.4 Working with JDBC Statementsccccooovviiiiiiiiiiiiiiiie 299
54.1 Executing SQL Statementscccccooininiiniiininnn, 299

5.4.2 Managing Connections, Statements, and Result Sets 303

5.4.3 Analyzing SQL Exceptionscccoccevvviiviiiinincnicincnnn, 304

5.4.4 Populating a Databaseccccoooiiiiiii 306

5.5 Query Executioncccoviiiiiiiiiiiiiiiii 310
5.5.1 Prepared Statementscccocirviiiiiiiiiiiiiiii 311

5.5.2 Reading and Writing LOBSsccccoiiiiiiiiiiiiiiii 317

5.5.3 SQL ESCapescccccuiriiiiiiiiiiiiiiiiccic 319
554 Multiple Resultscccccoviiiiiviiiniiiiiiiiiiiii 321
5.5.5 Retrieving Autogenerated Keyscccccoceviviiiinininnns 322

5.6 Scrollable and Updatable Result Setsccccecvviiiiiiiiiininnnn, 322
5.6.1 Scrollable Result Setscccccooeviiiiiiiiiiiiec 323

5.6.2 Updatable Result Setscccoeiiiiiiiiiiiiiiiiiiii 325

5.7 ROW Sets oo 329
5.7.1 Constructing Row Setsc.ccooiviiiiiiiiiiiii, 330

5.7.2 Cached Row Setsccccooviiiiiiiiiiiiiiiiiiiii, 330

5.8 Metadatacccooviiiiiiiiii 334

5.9 TranSACIONS .uuueeiiieeieiiiiieeee et ee e e ettt e e et e e e e et eeeeareeeees 344

Contents

59.1 Programming Transactions with JDBC 344

5.9.2 5aVe POINS ..eviiiiiiiiiiiiiiiiiiieeeceeccreeee e 345
5.9.3 Batch Updatesccccocoviiiiiiiiiiiiiiiiiiicicic 345
59.4 Advanced SQL Typescccocovrviiviiiiniiiiiiiiiiieiccc, 348

5.10 Connection Management in Web and Enterprise Applications .. 349
Chapter 6: The Date and Time API i 353
6.1 The Time LINE ..ccoocoiiieiiiieeiie ettt eeeeee e eiee e e e e eereeeseaeeenes 354
6.2 L0Cal DaAtes ..cccoeeeiiiiiee et 358
6.3 Date AdJustersccocovviviiiiiiiiiii 364
6.4 L0CAl TIME .iiieeiiiieiiie ettt ettt et et e et eeesebe e e enbaeeensaeeenes 365
(SIS T 4o Y s U=To B I ' s U= TS 367
6.6 Formatting and Parsingcccccocviiiiininii 371
6.7 Interoperating with Legacy Codeccccooveiiiiiiiiiiiiiine, 376
Chapter 7: Internationalizationcccccciiiiiiniiisinecenn e 379
4 R I Yo U =T SRR 380
711 Why Locales? ... 380

7.1.2 Specifying Localesccccooeiiiiiiiiiiiiiiice, 381

7.1.3 The Default Localecoceevriiieiiiieeiiiieciiee e 384

7.1.4 Display Namescccocvviviiiiiiiiiniiiiiiiiiiiciccce, 384

7.2 Number FOrmatsccocviiiiiiiiiiiiee et neee e 387
7.2.1 Formatting Numeric Valuesccccocvivininninininnnnn 387

7.2.2 CUITENCIES oouvviieeeeeiiiiieeeeeeeireeeeeeseiitteeesssnereeeesesnnnneeessnnnnes 393

7.3 Date and TIMeccoeveeiiiieeeeeiieiee ettt e e srree e e e eaaree e e 394
7.4 Collation and Normalizationccccceeiiiiiiiiiieeieiiiieeee e, 402
7.5 Message Formattingccccocovviniiiniiiiii 409
7.5.1 Formatting Numbers and Datesccccooeii, 409

7.5.2 Choice FOrmatsccccoeciieeriiiieeiiie e eeiie e eieeeevee e 411

7.6 Text Input and Outputccceviiiiiiiiiiii, 413
7.6.1 Text FIles ..o 414

7.6.2 Line ENdingsccocoiiiiiiiiiiii 414

7.6.3 The CONSOIE ..uoeviiieeiiiiiieeeeeeee e e 414
7.6.4 Log Files ..o 415

7.6.5 The UTF-8 Byte Order Markc.ccocevivininiininiinn, 415

7.6.6 Character Encoding of Source Filescccccccceinininnn 416

7.7 Resource BUundlescccooeeieeioiiiiiieeiiiiie e 417

Contents

7.7.1 Locating Resource Bundlesccocoovviininininn. 417

7.7.2 Property Files ..o 418

7.7.3 Bundle Classescccccocevieiiiiiniiiiiiicceiececen 419

7.8 A Complete Examplecccccociiiiiiiiiiiiiiiiiiiiis 421
Chapter 8: Scripting, Compiling, and Annotation Processing 439
8.1 Scripting for the Java Platform ... 440
8.1.1 Getting a Scripting Enginecccocooviiiiiiiininn 440

8.1.2 Script Evaluation and Bindingscccccevviviniiiiinnnn. 441

8.1.3 Redirecting Input and Outputcccecvviiiiiiiiiiiinn 444

8.1.4 Calling Scripting Functions and Methods 444

8.1.5 Compiling a Scriptccoovvviiviiiiiiiiiiiiiiii 446

8.1.6 An Example: Scripting GUI Eventsc.cccocovininnnnnn. 447

8.2 The Compiler APIcccoooiiiiiiiiiiiii e, 452
8.2.1 Invoking the Compilercccccoiviiiiiiiiiiiiiiiiiie, 453

8.2.2 Launching a Compilation Taskcccccevviviiininnnnn. 453

8.2.3 Capturing Diagnosticscccecvvvriiiniiiiiiiniiiiicic, 454

8.2.4 Reading Source Files from Memoryccccoceeriiinninnn. 454

8.2.5 Writing Byte Codes to Memoryccccocoeiiiiiiiiinnne, 455

8.2.6 An Example: Dynamic Java Code Generation 457

8.3 Using Annotationsccceciviiiiiiiiiiiiiii 463
8.3.1 An Introduction into Annotationsccccccecevinininnnn 464

8.3.2 An Example: Annotating Event Handlers 465

8.4 Annotation Syntax ..o 471
8.4.1 Annotation Interfacesccccccovrviiiiiniiiiiii, 471

8.4.2 Annotations ... 473

8.4.3 Annotating Declarationscccccooiviiiiiinininnnnn 475

8.4.4 Annotating Type Usescccccoiviviiiiiiiiiiiiiiie, 476

8.4.5 Annotating this ..o 477

8.5 Standard Annotationsccceevieiiiiiiiiiii 478
8.5.1 Annotations for Compilationcccecevviiiinininiinnn. 480

8.5.2 Annotations for Managing Resourcescccccoceeenne. 480

8.5.3 Meta-Annotationscccccoeiviiiiiiiiiiii 481

8.6 Source-Level Annotation Processingccccocoeviiiiiiiiiiinnnn. 484
8.6.1 Annotation Processorsc.ccccoeeviiiiviiiinininninne, 484

8.6.2 The Language Model APIccocoviiiiiiiniiii, 485

Contents

8.6.3 Using Annotations to Generate Source Code 486

8.7 Bytecode Engineeringcccccoooiiiiiiiiiiiii 489
8.7.1 Modifying Class Filescccccoviviniiiiiiiiiiiiiciccns 490

8.7.2 Modifying Bytecodes at Load Timeccccccooeciiiininninns 495
Chapter 9: The Java Platform Module Systemcccccemriiiicciiiiiccecccecnnnns 499
9.1 The Module CONceptccovvivviviiiiiiiiiiiiiii 500
9.2 Naming Modulesccccoiiiiiiiiiiiiiiiiiiiie 501
9.3 The Modular “Hello, World!” Programccccccccecvvviiiinninnnnne. 502
9.4 Requiring Modulesccccoooiiiiiiiiii 504
9.5 Exporting Packagesccccooviiiiiiiiiiii 506
9.6 ModUIAr JARS ..cceeeeiiiee et 510
9.7 Modules and Reflective AcCCeSSccccecuiiiiiiiiiiiiiiiiiiiice, 511
9.8 Automatic Modulesccccciiiiiiiiiiiiiiii e 515
9.9 The Unnamed Modulecccooiiiiiiiiiiniiiiniii, 517
9.10 Command-Line Flags for Migrationccccocooiiiiin 518
9.11 Transitive and Static Requirementscccccoviiiniiininnnnn 519
9.12 Qualified Exporting and Openingccccocevvviviiiviiiiiniinnnne. 521
9.13 Service Loadingccovvviviiiiiiiiiiiiiiiii 522
9.14 Tools for Working with Modulesccccocooiiininiininn 524
Chapter 10: SECUNY ...cccciiiiiiiiiiiiisseecmmennr s ssmmmmnnn s 529
10.1 Class Loaderscocoeieiiiiiiiiiiiiiiiiicceccceeeee e 530
10.1.1 The Class-Loading Processcccccccocvviviiiiiiiininnnnnn. 530
10.1.2 The Class Loader Hierarchyccccccovvininiinininnnnn. 532
10.1.3 Using Class Loaders as Namespacescccccoevevrrvrennrnne. 534
10.1.4 Writing Your Own Class Loaderccccocovviiiiiniininnnnnn. 534
10.1.5 Bytecode Verificationcccccceviiiiiiininiiiiiiiicn, 541

10.2 Security Managers and Permissionsccocoeeiiiiiieiiiiiiennnne. 546
10.2.1 Permission Checkingcccccceviviiiniiiiiiiiiiiiiicn, 546
10.2.2 Java Platform Securitycccccoovviiiniiiiiiiiiiiiiiiinn, 547
10.2.3 Security Policy Filesccccooeviiiiiiiiiiiiiiiii, 551
10.2.4 Custom Permissionsccccceviiiiiiiiiiiiiniiiiiiiiicecn, 559
10.2.5 Implementation of a Permission Classccccccoeininninn. 560

10.3 User Authenticationcccccooiiiiiiiiiiiiiiiii, 566
10.3.1 The JAAS Frameworkcccccceeevveciiiiieiieiieee e, 566

10.3.2 JAAS Login Modulesccccccoviiiiiiiiiiiiiiiiiiin, 573

Contents
10.4 Digital Signaturesccccoceeiiieiiieiii 582
10.4.1 Message Digestscccooveiiiiiiniiiiiiiii 583
10.4.2 Message SigNiNgcccocevieviiiiiinieiiiieieecece e 587
10.4.3 Verifying a Signatureccocoovviviiiiniiiiiiiien, 589
10.4.4 The Authentication Problemc.ccccociiiiininininnn 592
10.4.5 Certificate Signingcccocovvviiiiiniiiiniiie, 594
10.4.6 Certificate Requestscccccoceviiiiiniiiniiiiiii, 596
10.4.7 Code SigNningccccoeveivvivieiiiiiiiiiecceece e, 597
10.5 ENCryption ..o 599
10.5.1 Symmetric Cipherscccccocoociiiiiiiiiiiiiiiiiice, 600
10.5.2 Key Generationcccoceveviiiiiiiiiiiiiiiiieieccnne 602
10.5.3 Cipher Streamsccooeviiiiiiiiiiiiiiiii 607
10.5.4 Public Key Cipherscccociiiiiiiiiniiiiiiiiiie, 608
Chapter 11: Advanced Swing and GraphicCscuucemmemmmmmmimmsssssssssnsssnnen 613
111 Tables oo 613
11.1.1 A Simple Tableccoooviiiiiiiiiiiiiiiiii, 614
11.1.2 Table Modelscccooeiviiiiiiiiiiiiiiicc e, 618
11.1.3 Working with Rows and Columnsccccooo, 622
11.1.3.1 Column Classescccoceeevieerrevineiriiiencereieneennn 622
11.1.3.2 Accessing Table Columnscccccoevviviininnnnnne. 623
11.1.3.3 Resizing Columnsccccceiviiiiiiiiiiininiinnnn 624
11.1.3.4 Resizing ROWScccovviiiiiiiiiiiicic, 625
11.1.3.5 Selecting Rows, Columns, and Cells 626
11.1.3.6 Sorting ROWScceeieiiiiiiiicicccccc, 627
11.1.3.7 Filtering ROWScccoviiiiiiiiiiiiiiiiiiiiccc, 628
11.1.3.8 Hiding and Displaying Columns 630
11.1.4 Cell Rendering and Editingccccccoovveiiiinininininne. 639
11.1.4.1 Rendering Cellscccccooviviiiiiiniiiiiiiiiiiiie, 639
11.1.4.2 Rendering the Headerccccoceevviviiiinnnnn. 641
11.1.4.3 Editing Cellscocoovniiiiiiiiiiccce, 641
11.1.4.4 Custom Editorscccccovvniiiiiiiiiiiiien, 642
112 TIEES viiiiiiiiticiieieeee s 652
11.2.1 Simple Treesccccviiiiiiiiiiiiiiiiiii 654
11.2.1.1 Editing Trees and Tree Pathsc..c..c.ccooeei. 663

11.2.2 Node ENUMerationccccoeeeiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 672

Contents

11.2.3 Rendering Nodesccccevviiiiiniiniiiiiiicieeec 674
11.2.4 Listening to Tree Events ... 677
11.2.5 Custom Tree Modelscccccveievriiienciiieeeiee e 684
11.3 Advanced AWT ... e e e e e e e e 693
11.3.1 The Rendering Pipelineccccccoceviiiiininniiiinininn, 694
11.3.2 SRhaPes ..cccoviiiiiiiiiiiiii 696
11.3.2.1 The Shape Class Hierarchyccccocovvviiinininnn 697
11.3.2.2 Using the Shape Classesccccoevvevririnnnnnenn. 698
TT1.3.3 AT@AS .uvveeieiieiiiiieee e ettt e e eecreee e e e etrrreeeeestrbaeeeeessnraaaesaannnes 714
T11.3.4 SEEOKES woviiiiiiiieiee ettt e 715
G TR T - U1 o | USSR 724
11.3.6 Coordinate Transformationsccccceeeevvveeeeeicciieeeeeennns 727
11.3.7 CHPPINEG cevereeieiiiieiecieeeeeeee s 733
11.3.8 Transparency and Compositionc.cccceevviiviiiiinininnne. 735
11.4 Raster IMagescccovvviiiiiiiiiiiiiii 744
11.4.1 Readers and Writers for Imagescccccevvviniiiniiinnnnn 745

11.4.1.1 Obtaining Readers and Writers for Image File
TYPES oot 745

11.4.1.2 Reading and Writing Files with Multiple

IMages ..o 747
11.4.2 Image Manipulationccccooeviiiiiiiiiiiiiiiiiiii, 756
11.4.2.1 Constructing Raster Imagescccooevrveeneninn 756
11.4.2.2 Filtering Imagesc.ccocevviviiviiiiiiiiiiiiii 763
T11.5 Printing ..o 772
11.5.1 Graphics Printing ..o, 772
11.5.2 Multiple-Page Printingccccoooviiiniininniiiiiin, 782
11.5.3 Print SEIrVICES ...cceiieeciiiieeeieeiiiieeeeeeciireeeeeeirreee e e eneneeeseennes 792
11.5.4 Stream Print Servicesccccoovvvviiiriiiiiiiiiiiieiiieeeeeeeeeeeeeeeeens 796
11.5.5 Printing Attributescccoooiiii 799
Chapter 12: Native Methodscccrceeemmmmmmmninnisnssssesesssnnnsssssssssssssssssnnn 809
12.1 Calling a C Function from a Java Programcccccocevvviinnnnne. 810
12.2 Numeric Parameters and Return Valuescccccceveecvviieeeeecnnnen. 817
12.3 String Parametersccccccooiiiiiiiiiiiiiiiii 819
12.4 Accessing Fields ..o 825

12.4.1 Accessing Instance Fields ... 825

Contents
12.4.2 Accessing Static Fieldsccccocooviviniiiiiii 829
12.5 Encoding Signaturesccocooeieiiiiiiiiic 831
12.6 Calling Java Methodsccccoviiiiiiiiiiiiiiie 832
12.6.1 Instance Methodsccccoviviiiiiiiiiii 833
12.6.2 Static Methodsccccoiiiiiiiiiiiiice, 834
12.6.3 Constructorsccoceeveieiiviiiiiiiiicccce 835
12.6.4 Alternative Method Invocationsccccooeviviiiiiininn. 835
12.7 Accessing Array Elementsccccooiiiiiiiiiiiii, 840
12.8 Handling EITOrs ..ot 844
12.9 Using the Invocation API ..o, 849
12.10 A Complete Example: Accessing the Windows Registry 855
12.10.1 Overview of the Windows Registrycccocevvviiiininnn, 855
12.10.2 A Java Platform Interface for Accessing the Registry 856
12.10.3 Implementation of Registry Access Functions as

Native Methodsuuueeeeeieeiiiiiiieeeeeee e 857

Preface

To the Reader

The book you have in your hands is the second volume of the eleventh edition
of Core Java, fully updated for Java SE 11. The first volume covers the essential
features of the language; this volume deals with the advanced topics that a
programmer needs to know for professional software development. Thus, as
with the first volume and the previous editions of this book, we are still tar-
geting programmers who want to put Java technology to work in real projects.

As is the case with any book, errors and inaccuracies are inevitable. Should
you find any in this book, we would very much like to hear about them. Of
course, we would prefer to hear about them only once. For this reason, we
have put up a web site at http://horstmann.con/corejava with a FAQ, bug fixes, and
workarounds. Strategically placed at the end of the bug report web page (to
encourage you to read the previous reports) is a form that you can use to
report bugs or problems and to send suggestions for improvements for future
editions.

About This Book

The chapters in this book are, for the most part, independent of each other.
You should be able to delve into whatever topic interests you the most and
read the chapters in any order.

In Chapter 1, you will learn all about the Java stream library that brings a
modern flavor to processing data, by specifying what you want without de-
scribing in detail how the result should be obtained. This allows the stream
library to focus on an optimal evaluation strategy, which is particularly
advantageous for optimizing concurrent computations.

The topic of Chapter 2 is input and output handling (I/O). In Java, all input
and output is handled through input/output streams. These streams (not to
be confused with those in Chapter 1) let you deal, in a uniform manner, with
communications among various sources of data, such as files, network con-
nections, or memory blocks. We include detailed coverage of the reader and

Xv

http://horstmann.com/corejava

Preface

writer classes that make it easy to deal with Unicode. We show you what
goes on under the hood when you use the object serialization mechanism,
which makes saving and loading objects easy and convenient. We then move
on to regular expressions and working with files and paths. Throughout this
chapter, you will find welcome enhancements in recent Java versions.

Chapter 3 covers XML. We show you how to parse XML files, how to generate
XML, and how to use XSL transformations. As a useful example, we show
you how to specify the layout of a Swing form in XML. We also discuss the
XPath API, which makes finding needles in XML haystacks much easier.

Chapter 4 covers the networking API. Java makes it phenomenally easy to
do complex network programming. We show you how to make network
connections to servers, how to implement your own servers, and how to
make HTTP connections. This chapter includes coverage of the new HTTP
client.

Chapter 5 covers database programming. The main focus is on JDBC, the
Java database connectivity API that lets Java programs connect to relational
databases. We show you how to write useful programs to handle realistic
database chores, using a core subset of the JDBC API (A complete treatment
of the JDBC API would require a book almost as big as this one.) We finish
the chapter with a brief introduction into hierarchical databases and discuss
JNDI (the Java Naming and Directory Interface) and LDAP (the Lightweight
Directory Access Protocol).

Java had two prior attempts at libraries for handling date and time. The third
one was the charm in Java 8. In Chapter 6, you will learn how to deal with
the complexities of calendars and time zones, using the new date and time
library.

Chapter 7 discusses a feature that we believe can only grow in importance:
internationalization. The Java programming language is one of the few lan-
guages designed from the start to handle Unicode, but the internationalization
support on the Java platform goes much further. As a result, you can interna-
tionalize Java applications so that they cross not only platforms but country
boundaries as well. For example, we show you how to write a retirement
calculator that uses either English, German, or Chinese languages.

Chapter 8 discusses three techniques for processing code. The scripting and
compiler APIs allow your program to call code in scripting languages such
as JavaScript or Groovy, and to compile Java code. Annotations allow you to
add arbitrary information (sometimes called metadata) to a Java program. We

Preface

show you how annotation processors can harvest these annotations at the
source or class file level, and how annotations can be used to influence
the behavior of classes at runtime. Annotations are only useful with tools,
and we hope that our discussion will help you select useful annotation
processing tools for your needs.

In Chapter 9, you will learn about the Java Platform Module System that was
introduced in Java 9 to facilitate an orderly evolution of the Java platform and
core libraries. This module system provides encapsulation for packages and a
mechanism for describing module requirements. You will learn the properties
of modules so that you can decide whether to use them in your own applica-
tions. Even if you decide not to, you need to know the new rules so that you
can interact with the Java platform and other modularized libraries.

Chapter 10 takes up the Java security model. The Java platform was designed
from the ground up to be secure, and this chapter takes you under the hood
to see how this design is implemented. We show you how to write your own
class loaders and security managers for special-purpose applications. Then,
we take up the security API that allows for such important features as message
and code signing, authorization and authentication, and encryption. We
conclude with examples that use the AES and RSA encryption algorithms.

Chapter 11 contains all the Swing material that didn't make it into Volume I,
especially the important but complex tree and table components. We also
cover the Java 2D API, which you can use to create realistic drawings and
special effects. Of course, not many programmers need to program Swing
user interfaces these days, so we pay particular attention to features that are
useful for images that can be generated on a server.

Chapter 12 takes up native methods, which let you call methods written for
a specific machine such as the Microsoft Windows API. Obviously, this feature
is controversial: Use native methods, and the cross-platform nature of Java
vanishes. Nonetheless, every serious programmer writing Java applications
for specific platforms needs to know these techniques. At times, you need to
turn to the operating system’s API for your target platform when you interact
with a device or service that is not supported by Java. We illustrate this by
showing you how to access the registry API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version
of Java. Outdated material has been removed, and the new APIs of Java 9,
10, and 11 are covered in detail.

Preface

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

6 TIP: Tips are tagged with “tip” icons that look like this.

0 CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are a number of C++ notes that explain the difference between
the Java programming language and C++. You can skip them if you aren’t
interested in C++.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, we add a short
summary description at the end of the section. These descriptions are a bit
more informal but, we hope, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics, just
like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced.

Application Programming Interface

Programs whose source code is included in the companion code for this book
are listed as examples, for instance

Listing 1.1 ScriptTest.java

You can download the companion code from http://horstmann.com/corejava.

http://horstmann.com/corejava

Preface n

Register your copy of Core Java, Volume II—Advanced Features, Eleventh Edition,
on the InformIT site for convenient access to updates and/or corrections as
they become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780135166314) and
click Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

http://informit.com/register

This page intentionally left blank

Acknowledgments ™

Writing a book is always a monumental effort, and rewriting doesn’t seem
to be much easier, especially with such a rapid rate of change in Java technol-
ogy. Making a book a reality takes many dedicated people, and it is my great
pleasure to acknowledge the contributions of the entire Core Java team.

A large number of individuals at Pearson provided valuable assistance, but
they managed to stay behind the scenes. I'd like them all to know how much
I appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench, for steering the book through the writing and production process,
and for allowing me to be blissfully unaware of the existence of all those
folks behind the scenes. I am very grateful to Julie Nahil for production
support, and to Dmitry Kirsanov and Alina Kirsanova for copyediting and
typesetting the manuscript.

Thanks to the many readers of earlier editions who reported embarrassing
errors and made lots of thoughtful suggestions for improvement. I am partic-
ularly grateful to the excellent reviewing team that went over the manuscript
with an amazing eye for detail and saved me from many more embarrassing
errors.

Reviewers of this and earlier editions include Chuck Allison (Contributing
Editor, C/C++ Users Journal), Lance Anderson (Oracle), Alec Beaton (Point-
Base, Inc.), Cliff Berg (iSavvix Corporation), Joshua Bloch, David Brown,
Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),
Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), Robert
Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab),
David Geary (Sabreware), Jim Gish (Oracle), Brian Goetz (Oracle), Angela
Gordon, Dan Gordon, Rob Gordon, John Gray (University of Hartford),
Cameron Gregory (olabs.com), Steve Haines, Marty Hall (The Johns Hopkins
University Applied Physics Lab), Vincent Hardy, Dan Harkey (San Jose State
University), William Higgins (IBM), Vladimir Ivanovic (PointBase), Jerry
Jackson (ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra,
Charlie Lai, Angelika Langer, Doug Langston, Hang Lau (McGill University),
Mark Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch
(Lynch Associates), Philip Milne (consultant), Mark Morrissey (The Oregon
Graduate Institute), Mahesh Neelakanta (Florida Atlantic University), Hao
Pham, Paul Philion, Blake Ragsdell, Ylber Ramadani (Ryerson University),

http://olabs.com

Acknowledgments

Stuart Reges (University of Arizona), Simon Ritter, Rich Rosen (Interactive
Data Corporation), Peter Sanders (ESSI University, Nice, France), Dr. Paul
Sanghera (San Jose State University and Brooks College), Paul Sevinc (Teamup
AG), Yoshiki Shabata, Devang Shah, Richard Slywczak (NASA/Glenn Research
Center), Bradley A. Smith, Steven Stelting, Christopher Taylor, Luke Taylor
(Valtech), George Thiruvathukal, Kim Topley (author of Core JFC, Second Edi-
tion), Janet Traub, Paul Tyma (consultant), Christian Ullenboom, Peter van
der Linden, Burt Walsh, Joe Wang (Oracle), and Dan Xu (Oracle).

Cay Horstmann
San Francisco, California
December 2018

CHAPTER

Streams

In this chapter

e 1.1 From lterating to Stream Operations, page 2
e 1.2 Stream Creation, page 5

e 1.3 The filter, map, and flatMap Methods, page 11
e 1.4 Extracting Substreams and Combining Streams, page 12
e 1.5 Other Stream Transformations, page 14

e 1.6 Simple Reductions, page 15

e 1.7 The Optional Type, page 16

e 1.8 Collecting Results, page 25

e 1.9 Collecting into Maps, page 30

e 1.10 Grouping and Partitioning, page 34

e 1.11 Downstream Collectors, page 36

e 1.12 Reduction Operations, page 41

e 1.13 Primitive Type Streams, page 43

e 1.14 Parallel Streams, page 48

Compared to collections, streams provide a view of data that lets you specify
computations at a higher conceptual level. With a stream, you specify what
you want to have done, not how to do it. You leave the scheduling of opera-
tions to the implementation. For example, suppose you want to compute the

Chapter 1 m Streams

average of a certain property. You specify the source of data and the property,
and the stream library can then optimize the computation, for example by
using multiple threads for computing sums and counts and combining the
results.

In this chapter, you will learn how to use the Java stream library, which was
introduced in Java 8, to process collections in a “what, not how” style.

1.1 From Iterating to Stream Operations

When you process a collection, you usually iterate over its elements and do
some work with each of them. For example, suppose we want to count all
long words in a book. First, let's put them into a list:

var contents = Files.readStr(
Paths.get("alice.txt")); // Read file into string
List<String> words = List.of(contents.split("\\PL+"));
// Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;
for (String w : words) {

if (w.length() > 12) count++;
}

With streams, the same operation looks like this:

long count = words.stream()
filter(w -> w.length() > 12)
.count();

Now you don’t have to scan the loop for evidence of filtering and counting.
The method names tell you right away what the code intends to do. Moreover,
where the loop prescribes the order of operations in complete detail, a stream
is able to schedule the operations any way it wants, as long as the result is
correct.

Simply changing stream to parallelStrean allows the stream library to do the
filtering and counting in parallel.

long count = words.parallelStream()
filter(w -> w.length() > 12)
.count();

1.1 ®m From Iterating to Stream Operations

Streams follow the “what, not how” principle. In our stream example, we
describe what needs to be done: get the long words and count them.
We don't specify in which order, or in which thread, this should happen. In
contrast, the loop at the beginning of this section specifies exactly how the
computation should work, and thereby forgoes any chances of optimization.

A stream seems superficially similar to a collection, allowing you to transform
and retrieve data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying
collection or generated on demand.

2. Stream operations don't mutate their source. For example, the filter
method does not remove elements from a stream but yields a new stream
in which they are not present.

3. Stream operations are lazy when possible. This means they are not exe-
cuted until their result is needed. For example, if you only ask for the
first five long words instead of all, the filter method will stop filtering
after the fifth match. As a consequence, you can even have infinite
streams!

Let us have another look at the example. The stream and parallelStrean methods
yield a stream for the words list. The filter method returns another stream that
contains only the words of length greater than twelve. The count method
reduces that stream to a result.

This workflow is typical when you work with streams. You set up a pipeline
of operations in three stages:

1. Create a stream.

2. Specify intermediate operations for transforming the initial stream into
others, possibly in multiple steps.

3. Apply a terminal operation to produce a result. This operation forces the
execution of the lazy operations that precede it. Afterwards, the stream
can no longer be used.

In the example in Listing 1.1, the stream is created with the stream or
parallelStream method. The filter method transforms it, and count is the terminal
operation.

In the next section, you will see how to create a stream. The subsequent three
sections deal with stream transformations. They are followed by five sections
on terminal operations.

Chapter 1 m Streams

Listing 1.1 streams/CountLongWords. java

© © uw o U A W N e

10
11
12
13

package streanms;

/**

* @version 1.01 2018-05-01
* @author Cay Horstmann
*/

import java.io.*;

import java.nio.charset.*;
import java.nio.file.*;
import java.util.*;

public class CountLongWords

1 {

15 public static void main(String[] args) throws IOException
16 {

17 var contents = Files.readStr(

18 Paths.get("../gutenberg/alice30.txt"));

19 List<String> words = List.of(contents.split("\\PL+"));
20

2 long count = 0;

2 for (String w : words)

23 {

% if (w.length() > 12) count++;

25 }

2 System.out.println(count);

27

28 count = words.stream().filter(w -> w.length() > 12).count();
29 System.out.println(count);

30

31 count = words.parallelStream().filter(w -> w.length() > 12).count();
2 System.out.println(count);

3 }

3}

java.util.stream.Stream<T>

Stream<T> filter(Predicate<? super T> p)
yields a stream containing all elements of this stream fulfilling p.
long count()

yields the number of elements of this stream. This is a terminal operation.

1.2 m Stream Creation

java.util.Collection<E>

e default Stream<E> stream()
e default Stream<E> parallelStream()

yields a sequential or parallel stream of the elements in this collection.

1.2 Stream Creation

You have already seen that you can turn any collection into a stream with
the stream method of the Collection interface. If you have an array, use the static
Stream.of method instead.

Stream<String> words = Stream.of (contents.split("\\PL+"));
// split returns a String[] array

The of method has a varargs parameter, so you can construct a stream from
any number of arguments:

Stream<String> song = Stream.of("gently", "down", "the", "stream");
Use Arrays.stream(array, from, to) to make a stream from a part of an array.

To make a stream with no elements, use the static Stream.empty method:

Stream<String> silence = Stream.empty();
// Generic type <String> is inferred; same as Stream.<String>empty()

The Stream interface has two static methods for making infinite streams. The
generate method takes a function with no arguments (or, technically, an object
of the Supplier<T> interface). Whenever a stream value is needed, that function
is called to produce a value. You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate(Math::random);

To produce sequences such as 0 123 . . ., use the iterate method instead. It
takes a “seed” value and a function (technically, a UnaryOperator<T>) and repeatedly
applies the function to the previous result. For example,

Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE));

Chapter 1 m Streams

The first element in the sequence is the seed BigInteger.ZER0. The second element
is f(seed) which yields 1 (as a big integer). The next element is f(f(seed)) which
yields 2, and so on.

To produce a finite stream instead, add a predicate that specifies when the
iteration should finish:

var limit = new BigInteger("10000000");
Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERQ,
n -> n.compareTo(limit) < 0,
n -> n.add(BigInteger.ONE));

As soon as the predicate rejects an iteratively generated value, the stream ends.

Finally, the Stream.ofNullable method makes a really short stream from an object.
The stream has length 0 if the object is null or length 1 otherwise, containing
just the object. This is mostly useful in conjunction with flatMap—see
Section 1.7.7, “Turning an Optional into a Stream,” on p. 22 for an example.

P NOTE: A number of methods in the Java API yield streams. For example, the
é Pattern class has a method splitAsStream that splits a CharSequence by a regular
expression. You can use the following statement to split a string into words:

Stream<String> words = Pattern.compile("\\PL+").splitAsStream(contents);

The Scanner. tokens method yields a stream of tokens of a scanner. Another way
to get a stream of words from a string is

Stream<String> words = new Scanner(contents).tokens();
The static Files.lines method returns a Stream of all lines in a file:

try (Stream<String> lines = Files.lines(path)) {
Process lines

}

< NOTE: If you have an Iterable that is not a collection, you can turn it into a
stream by calling

StreamSupport.stream(iterable.spliterator(), false);
If you have an Iterator and want a stream of its results, use

StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator, Spliterator.ORDERED), false);

1.2 m Stream Creation

CAUTION: It is very important that you don’t modify the collection backing a
stream while carrying out a stream operation. Remember that streams don’t
collect their data—the data is always in a separate collection. If you modify
that collection, the outcome of the stream operations becomes undefined. The
JDK documentation refers to this requirement as noninterference.

To be exact, since intermediate stream operations are lazy, it is possible to
mutate the collection up to the point where the terminal operation executes.
For example, the following, while certainly not recommended, will work:

List<String> wordList = . . .;
Stream<String> words = wordList.stream();
wordList.add("END");

long n = words.distinct().count();

But this code is wrong:

Stream<String> words = wordList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));
// ERROR--interference

The example program in Listing 1.2 shows the various ways of creating a
stream.

Listing 1.2 streams/CreatingStreams.java

© o - o U A W N e

package streams;

/

*%

* @version 1.01 2018-05-01
* @author Cay Horstmann

*/

import java.io.IOException;

import java.math.BigInteger;

import java.nio.charset.StandardCharsets;
import java.nio.file.*;

import java.util.*;

import java.util.regex.Pattern;

import java.util.stream.*;

public class CreatingStreams

{

public static <T> void show(String title, Stream<T> stream)

{

(Continues)

http://java.io

Chapter 1 m Streams

Listing 1.2 (Continued)

20
21
2
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
4
2
83
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

}

final int SIZE = 10;
List<T> firstElements = stream
Jimit(SIZE + 1)
.collect(Collectors.toList());
System.out.print(title + ": ");
for (int 1 = 0; i < firstElements.size(); i++)
{
if (i > 0) System.out.print(", ");
if (1 < SIZE) System.out.print(firstElements.get(i));
else System.out.print("...");
}
System.out.println();

public static void main(String[] args) throws IOException

{

Path path = Paths.get("../gutenberg/alice30.txt");
var contents = Files.readStr(path);

Stream<String> words = Stream.of(contents.split("\\PL+"));
show("words", words);

Stream<String> song = Stream.of("gently", "down", "the", "stream");
show("song", song);

Stream<String> silence = Stream.empty();

show("silence", silence);

Stream<String> echos = Stream.generate(() -> "Echo");
show("echos", echos);

Stream<Double> randoms = Stream.generate(Math::random);
show("randoms", randoms);

Stream<BigInteger> integers = Stream.iterate(BigInteger.ONE,
n -> n.add(BigInteger.ONE));
show("integers", integers);

Stream<String> wordsAnotherWay = Pattern.compile("\\PL+").splitAsStream(contents);
show("wordsAnotherWay", wordsAnotherWay);

try (Stream<String> lines = Files.lines(path, StandardCharsets.UTF 8))
{

}

show("lines", lines);

Iterable<Path> iterable = FileSystems.getDefault().getRootDirectories();
Stream<Path> rootDirectories = StreamSupport.stream(iterable.spliterator(), false);
show("rootDirectories", rootDirectories);

1.2 m Stream Creation

67

68 Iterator<Path> iterator = Paths.get("/usr/share/dict/words").iterator();

69 Stream<Path> pathComponents = StreamSupport.stream(Spliterators.spliteratorUnknownSize(
70 iterator, Spliterator.ORDERED), false);

71 show("pathComponents", pathComponents);

7 }

7}

java.util.stream.Stream

e static <T> Stream<T> of(T... values)

yields a stream whose elements are the given values.
e static <T> Stream<T> empty()

yields a stream with no elements.
e static <T> Stream<T> generate(Supplier<T> s)

yields an infinite stream whose elements are constructed by repeatedly invoking
the function s.

e static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)
e static <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> f)

yields a stream whose elements are seed, f invoked on seed, f invoked on the
preceding element, and so on. The first method yields an infinite stream.
The stream of the second method comes to an end before the first element
that doesn't fulfill the hasNext predicate.

e static <T> Stream<T> ofNullable(T t)

returns an empty stream if t is null or a stream containing t otherwise.

java.util.Spliterators

e static <T> Spliterator<T> spliteratorUnknownSize(Iterator<? extends T> iterator, int
characteristics)

turns an iterator into a splittable iterator of unknown size with the given
characteristics (a bit pattern containing constants such as Spliterator.0RDERED).

java.util.Arrays

e static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive)

yields a stream whose elements are the specified range of the array.

