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Preface

To the Reader

The book you have in your hands is the second volume of the eleventh edition
of Core Java, fully updated for Java SE 11. The first volume covers the essential
features of the language; this volume deals with the advanced topics that a
programmer needs to know for professional software development. Thus, as
with the first volume and the previous editions of this book, we are still tar-
geting programmers who want to put Java technology to work in real projects.

As is the case with any book, errors and inaccuracies are inevitable. Should
you find any in this book, we would very much like to hear about them. Of
course, we would prefer to hear about them only once. For this reason, we
have put up a web site at http://horstmann.con/corejava with a FAQ, bug fixes, and
workarounds. Strategically placed at the end of the bug report web page (to
encourage you to read the previous reports) is a form that you can use to
report bugs or problems and to send suggestions for improvements for future
editions.

About This Book

The chapters in this book are, for the most part, independent of each other.
You should be able to delve into whatever topic interests you the most and
read the chapters in any order.

In Chapter 1, you will learn all about the Java stream library that brings a
modern flavor to processing data, by specifying what you want without de-
scribing in detail how the result should be obtained. This allows the stream
library to focus on an optimal evaluation strategy, which is particularly
advantageous for optimizing concurrent computations.

The topic of Chapter 2 is input and output handling (I/O). In Java, all input
and output is handled through input/output streams. These streams (not to
be confused with those in Chapter 1) let you deal, in a uniform manner, with
communications among various sources of data, such as files, network con-
nections, or memory blocks. We include detailed coverage of the reader and
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writer classes that make it easy to deal with Unicode. We show you what
goes on under the hood when you use the object serialization mechanism,
which makes saving and loading objects easy and convenient. We then move
on to regular expressions and working with files and paths. Throughout this
chapter, you will find welcome enhancements in recent Java versions.

Chapter 3 covers XML. We show you how to parse XML files, how to generate
XML, and how to use XSL transformations. As a useful example, we show
you how to specify the layout of a Swing form in XML. We also discuss the
XPath API, which makes finding needles in XML haystacks much easier.

Chapter 4 covers the networking API. Java makes it phenomenally easy to
do complex network programming. We show you how to make network
connections to servers, how to implement your own servers, and how to
make HTTP connections. This chapter includes coverage of the new HTTP
client.

Chapter 5 covers database programming. The main focus is on JDBC, the
Java database connectivity API that lets Java programs connect to relational
databases. We show you how to write useful programs to handle realistic
database chores, using a core subset of the JDBC API (A complete treatment
of the JDBC API would require a book almost as big as this one.) We finish
the chapter with a brief introduction into hierarchical databases and discuss
JNDI (the Java Naming and Directory Interface) and LDAP (the Lightweight
Directory Access Protocol).

Java had two prior attempts at libraries for handling date and time. The third
one was the charm in Java 8. In Chapter 6, you will learn how to deal with
the complexities of calendars and time zones, using the new date and time
library.

Chapter 7 discusses a feature that we believe can only grow in importance:
internationalization. The Java programming language is one of the few lan-
guages designed from the start to handle Unicode, but the internationalization
support on the Java platform goes much further. As a result, you can interna-
tionalize Java applications so that they cross not only platforms but country
boundaries as well. For example, we show you how to write a retirement
calculator that uses either English, German, or Chinese languages.

Chapter 8 discusses three techniques for processing code. The scripting and
compiler APIs allow your program to call code in scripting languages such
as JavaScript or Groovy, and to compile Java code. Annotations allow you to
add arbitrary information (sometimes called metadata) to a Java program. We
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show you how annotation processors can harvest these annotations at the
source or class file level, and how annotations can be used to influence
the behavior of classes at runtime. Annotations are only useful with tools,
and we hope that our discussion will help you select useful annotation
processing tools for your needs.

In Chapter 9, you will learn about the Java Platform Module System that was
introduced in Java 9 to facilitate an orderly evolution of the Java platform and
core libraries. This module system provides encapsulation for packages and a
mechanism for describing module requirements. You will learn the properties
of modules so that you can decide whether to use them in your own applica-
tions. Even if you decide not to, you need to know the new rules so that you
can interact with the Java platform and other modularized libraries.

Chapter 10 takes up the Java security model. The Java platform was designed
from the ground up to be secure, and this chapter takes you under the hood
to see how this design is implemented. We show you how to write your own
class loaders and security managers for special-purpose applications. Then,
we take up the security API that allows for such important features as message
and code signing, authorization and authentication, and encryption. We
conclude with examples that use the AES and RSA encryption algorithms.

Chapter 11 contains all the Swing material that didn't make it into Volume I,
especially the important but complex tree and table components. We also
cover the Java 2D API, which you can use to create realistic drawings and
special effects. Of course, not many programmers need to program Swing
user interfaces these days, so we pay particular attention to features that are
useful for images that can be generated on a server.

Chapter 12 takes up native methods, which let you call methods written for
a specific machine such as the Microsoft Windows API. Obviously, this feature
is controversial: Use native methods, and the cross-platform nature of Java
vanishes. Nonetheless, every serious programmer writing Java applications
for specific platforms needs to know these techniques. At times, you need to
turn to the operating system’s API for your target platform when you interact
with a device or service that is not supported by Java. We illustrate this by
showing you how to access the registry API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version
of Java. Outdated material has been removed, and the new APIs of Java 9,
10, and 11 are covered in detail.
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Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

6 TIP: Tips are tagged with “tip” icons that look like this.

0 CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are a number of C++ notes that explain the difference between
the Java programming language and C++. You can skip them if you aren’t
interested in C++.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, we add a short
summary description at the end of the section. These descriptions are a bit
more informal but, we hope, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics, just
like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced.

Application Programming Interface

Programs whose source code is included in the companion code for this book
are listed as examples, for instance

Listing 1.1 ScriptTest.java

You can download the companion code from http://horstmann.com/corejava.
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Register your copy of Core Java, Volume II—Advanced Features, Eleventh Edition,
on the InformIT site for convenient access to updates and/or corrections as
they become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780135166314) and
click Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.
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Compared to collections, streams provide a view of data that lets you specify
computations at a higher conceptual level. With a stream, you specify what
you want to have done, not how to do it. You leave the scheduling of opera-
tions to the implementation. For example, suppose you want to compute the
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average of a certain property. You specify the source of data and the property,
and the stream library can then optimize the computation, for example by
using multiple threads for computing sums and counts and combining the
results.

In this chapter, you will learn how to use the Java stream library, which was
introduced in Java 8, to process collections in a “what, not how” style.

1.1 From Iterating to Stream Operations

When you process a collection, you usually iterate over its elements and do
some work with each of them. For example, suppose we want to count all
long words in a book. First, let's put them into a list:

var contents = Files.readStr(
Paths.get("alice.txt")); // Read file into string
List<String> words = List.of(contents.split("\\PL+"));
// Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;
for (String w : words) {

if (w.length() > 12) count++;
}

With streams, the same operation looks like this:

long count = words.stream()
filter(w -> w.length() > 12)
.count();

Now you don’t have to scan the loop for evidence of filtering and counting.
The method names tell you right away what the code intends to do. Moreover,
where the loop prescribes the order of operations in complete detail, a stream
is able to schedule the operations any way it wants, as long as the result is
correct.

Simply changing stream to parallelStrean allows the stream library to do the
filtering and counting in parallel.

long count = words.parallelStream()
filter(w -> w.length() > 12)
.count();
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Streams follow the “what, not how” principle. In our stream example, we
describe what needs to be done: get the long words and count them.
We don't specify in which order, or in which thread, this should happen. In
contrast, the loop at the beginning of this section specifies exactly how the
computation should work, and thereby forgoes any chances of optimization.

A stream seems superficially similar to a collection, allowing you to transform
and retrieve data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying
collection or generated on demand.

2. Stream operations don't mutate their source. For example, the filter
method does not remove elements from a stream but yields a new stream
in which they are not present.

3. Stream operations are lazy when possible. This means they are not exe-
cuted until their result is needed. For example, if you only ask for the
first five long words instead of all, the filter method will stop filtering
after the fifth match. As a consequence, you can even have infinite
streams!

Let us have another look at the example. The stream and parallelStrean methods
yield a stream for the words list. The filter method returns another stream that
contains only the words of length greater than twelve. The count method
reduces that stream to a result.

This workflow is typical when you work with streams. You set up a pipeline
of operations in three stages:

1. Create a stream.

2. Specify intermediate operations for transforming the initial stream into
others, possibly in multiple steps.

3. Apply a terminal operation to produce a result. This operation forces the
execution of the lazy operations that precede it. Afterwards, the stream
can no longer be used.

In the example in Listing 1.1, the stream is created with the stream or
parallelStream method. The filter method transforms it, and count is the terminal
operation.

In the next section, you will see how to create a stream. The subsequent three
sections deal with stream transformations. They are followed by five sections
on terminal operations.
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Listing 1.1 streams/CountLongWords. java

© © uw o U A W N e

10
11
12
13

package streanms;

/**

* @version 1.01 2018-05-01
* @author Cay Horstmann
*/

import java.io.*;

import java.nio.charset.*;
import java.nio.file.*;
import java.util.*;

public class CountLongWords

1 {

15 public static void main(String[] args) throws IOException
16 {

17 var contents = Files.readStr(

18 Paths.get("../gutenberg/alice30.txt"));

19 List<String> words = List.of(contents.split("\\PL+"));
20

2 long count = 0;

2 for (String w : words)

23 {

% if (w.length() > 12) count++;

25 }

2 System.out.println(count);

27

28 count = words.stream().filter(w -> w.length() > 12).count();
29 System.out.println(count);

30

31 count = words.parallelStream().filter(w -> w.length() > 12).count();
2 System.out.println(count);

3 }

3}

java.util.stream.Stream<T>

Stream<T> filter(Predicate<? super T> p)
yields a stream containing all elements of this stream fulfilling p.
long count()

yields the number of elements of this stream. This is a terminal operation.
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java.util.Collection<E>

e default Stream<E> stream()
e default Stream<E> parallelStream()

yields a sequential or parallel stream of the elements in this collection.

1.2 Stream Creation

You have already seen that you can turn any collection into a stream with
the stream method of the Collection interface. If you have an array, use the static
Stream.of method instead.

Stream<String> words = Stream.of (contents.split("\\PL+"));
// split returns a String[] array

The of method has a varargs parameter, so you can construct a stream from
any number of arguments:

Stream<String> song = Stream.of("gently", "down", "the", "stream");
Use Arrays.stream(array, from, to) to make a stream from a part of an array.

To make a stream with no elements, use the static Stream.empty method:

Stream<String> silence = Stream.empty();
// Generic type <String> is inferred; same as Stream.<String>empty()

The Stream interface has two static methods for making infinite streams. The
generate method takes a function with no arguments (or, technically, an object
of the Supplier<T> interface). Whenever a stream value is needed, that function
is called to produce a value. You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate(Math::random);

To produce sequences such as 0 123 . . ., use the iterate method instead. It
takes a “seed” value and a function (technically, a UnaryOperator<T>) and repeatedly
applies the function to the previous result. For example,

Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE));
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The first element in the sequence is the seed BigInteger.ZER0. The second element
is f(seed) which yields 1 (as a big integer). The next element is f(f(seed)) which
yields 2, and so on.

To produce a finite stream instead, add a predicate that specifies when the
iteration should finish:

var limit = new BigInteger("10000000");
Stream<BigInteger> integers
= Stream.iterate(BigInteger.ZERQ,
n -> n.compareTo(limit) < 0,
n -> n.add(BigInteger.ONE));

As soon as the predicate rejects an iteratively generated value, the stream ends.

Finally, the Stream.ofNullable method makes a really short stream from an object.
The stream has length 0 if the object is null or length 1 otherwise, containing
just the object. This is mostly useful in conjunction with flatMap—see
Section 1.7.7, “Turning an Optional into a Stream,” on p. 22 for an example.

P NOTE: A number of methods in the Java API yield streams. For example, the
é Pattern class has a method splitAsStream that splits a CharSequence by a regular
expression. You can use the following statement to split a string into words:

Stream<String> words = Pattern.compile("\\PL+").splitAsStream(contents);

The Scanner. tokens method yields a stream of tokens of a scanner. Another way
to get a stream of words from a string is

Stream<String> words = new Scanner(contents).tokens();
The static Files.lines method returns a Stream of all lines in a file:

try (Stream<String> lines = Files.lines(path)) {
Process lines

}

< NOTE: If you have an Iterable that is not a collection, you can turn it into a
stream by calling

StreamSupport.stream(iterable.spliterator(), false);
If you have an Iterator and want a stream of its results, use

StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator, Spliterator.ORDERED), false);
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CAUTION: It is very important that you don’t modify the collection backing a
stream while carrying out a stream operation. Remember that streams don’t
collect their data—the data is always in a separate collection. If you modify
that collection, the outcome of the stream operations becomes undefined. The
JDK documentation refers to this requirement as noninterference.

To be exact, since intermediate stream operations are lazy, it is possible to
mutate the collection up to the point where the terminal operation executes.
For example, the following, while certainly not recommended, will work:

List<String> wordList = . . .;
Stream<String> words = wordList.stream();
wordList.add("END");

long n = words.distinct().count();

But this code is wrong:

Stream<String> words = wordList.stream();
words.forEach(s -> if (s.length() < 12) wordList.remove(s));
// ERROR--interference

The example program in Listing 1.2 shows the various ways of creating a
stream.

Listing 1.2 streams/CreatingStreams.java

© o - o U A W N e

package streams;

/

*%

* @version 1.01 2018-05-01
* @author Cay Horstmann

*/

import java.io.IOException;

import java.math.BigInteger;

import java.nio.charset.StandardCharsets;
import java.nio.file.*;

import java.util.*;

import java.util.regex.Pattern;

import java.util.stream.*;

public class CreatingStreams

{

public static <T> void show(String title, Stream<T> stream)

{

(Continues)
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Listing 1.2 (Continued)

20
21
2
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
4
2
83
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

}

final int SIZE = 10;
List<T> firstElements = stream
Jimit(SIZE + 1)
.collect(Collectors.toList());
System.out.print(title + ": ");
for (int 1 = 0; i < firstElements.size(); i++)
{
if (i > 0) System.out.print(", ");
if (1 < SIZE) System.out.print(firstElements.get(i));
else System.out.print("...");
}
System.out.println();

public static void main(String[] args) throws IOException

{

Path path = Paths.get("../gutenberg/alice30.txt");
var contents = Files.readStr(path);

Stream<String> words = Stream.of(contents.split("\\PL+"));
show("words", words);

Stream<String> song = Stream.of("gently", "down", "the", "stream");
show("song", song);

Stream<String> silence = Stream.empty();

show("silence", silence);

Stream<String> echos = Stream.generate(() -> "Echo");
show("echos", echos);

Stream<Double> randoms = Stream.generate(Math::random);
show("randoms", randoms);

Stream<BigInteger> integers = Stream.iterate(BigInteger.ONE,
n -> n.add(BigInteger.ONE));
show("integers", integers);

Stream<String> wordsAnotherWay = Pattern.compile("\\PL+").splitAsStream(contents);
show("wordsAnotherWay", wordsAnotherWay);

try (Stream<String> lines = Files.lines(path, StandardCharsets.UTF 8))
{

}

show("lines", lines);

Iterable<Path> iterable = FileSystems.getDefault().getRootDirectories();
Stream<Path> rootDirectories = StreamSupport.stream(iterable.spliterator(), false);
show("rootDirectories", rootDirectories);
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67

68 Iterator<Path> iterator = Paths.get("/usr/share/dict/words").iterator();

69 Stream<Path> pathComponents = StreamSupport.stream(Spliterators.spliteratorUnknownSize(
70 iterator, Spliterator.ORDERED), false);

71 show("pathComponents", pathComponents);

7 }

7}

java.util.stream.Stream

e static <T> Stream<T> of(T... values)

yields a stream whose elements are the given values.
e static <T> Stream<T> empty()

yields a stream with no elements.
e static <T> Stream<T> generate(Supplier<T> s)

yields an infinite stream whose elements are constructed by repeatedly invoking
the function s.

e static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)
e static <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> f)

yields a stream whose elements are seed, f invoked on seed, f invoked on the
preceding element, and so on. The first method yields an infinite stream.
The stream of the second method comes to an end before the first element
that doesn't fulfill the hasNext predicate.

e static <T> Stream<T> ofNullable(T t)

returns an empty stream if t is null or a stream containing t otherwise.

java.util.Spliterators

e static <T> Spliterator<T> spliteratorUnknownSize(Iterator<? extends T> iterator, int
characteristics)

turns an iterator into a splittable iterator of unknown size with the given
characteristics (a bit pattern containing constants such as Spliterator.0RDERED).

java.util.Arrays

e static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive)

yields a stream whose elements are the specified range of the array.



